Learning to Hash with Partial Tags: Exploring Correlation between Tags and Hashing Bits for Large Scale Image Retrieval

نویسندگان

  • Qifan Wang
  • Luo Si
  • Dan Zhang
چکیده

Similarity search is an important technique in many large scale vision applications. Hashing approach becomes popular for similarity search due to its computational and memory efficiency. Recently, it has been shown that the hashing quality could be improved by combining supervised information, e.g. semantic tags/labels, into hashing function learning. However, tag information is not fully exploited in existing unsupervised and supervised hashing methods especially when only partial tags are available. This paper proposes a novel semi-supervised tag hashing (SSTH) approach that fully incorporates tag information into learning effective hashing function by exploring the correlation between tags and hashing bits. The hashing function is learned in a unified learning framework by simultaneously ensuring the tag consistency and preserving the similarities between image examples. An iterative coordinate descent algorithm is designed as the optimization procedure. Furthermore, we improve the effectiveness of hashing function through orthogonal transformation by minimizing the quantization error. Extensive experiments on two large scale image datasets demonstrate the superior performance of the proposed approach over several state-of-the-art hashing methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Decorrelated Hashing Codes for Multimodal Retrieval

In social networks, heterogeneous multimedia data correlate to each other, such as videos and their corresponding tags in YouTube and image-text pairs in Facebook. Nearest neighbor retrieval across multiple modalities on large data sets becomes a hot yet challenging problem. Hashing is expected to be an efficient solution, since it represents data as binary codes. As the bit-wise XOR operations...

متن کامل

Guest Editorial: Big Media Data: Understanding, Search, and Mining (Part 2)

BIG media data is a new research area, and has been attracting a lot of research interests in both industry and academia. In the first part of this special issue, we have introduced three papers on large scale similar image search, image search quality improvement, and semi-supervised multi-label image annotation. This second part of this special issue includes two examples on large scale visua...

متن کامل

Query-adaptive Image Retrieval by Deep Weighted Hashing

The hashing methods have attracted much attention for large scale image retrieval. Some deep hashing methods have achieved promising results by taking advantage of the better representation power of deep networks recently. However, existing deep hashing methods treat all hash bits equally. On one hand, a large number of images share the same distance to a query image because of the discrete Ham...

متن کامل

Mining Histopathological Images via Composite Hashing and Online Learning

With a continuous growing amount of annotated histopathological images, large-scale and data-driven methods potentially provide the promise of bridging the semantic gap between these images and their diagnoses. The purpose of this paper is to increase the scale at which automated systems can entail scalable analysis of histopathological images in massive databases. Specifically, we propose a pr...

متن کامل

Deep Multi-label Hashing for Large-Scale Visual Search Based on Semantic Graph

Huge volumes of images are aggregated over time because many people upload their favorite images to various social websites such as Flickr and share them with their friends. Accordingly, visual search from large scale image databases is getting more and more important. Hashing is an efficient technique to large-scale visual content search, and learning-based hashing approaches have achieved gre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014